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Volume-of-fluid (VOF) methods are popular for the direct numerical simulation of
time-dependent viscous incompressible flow of multiple liquids. As in any numerical
method, however, it has its weaknesses, namely, for flows in which the capillary
force is the dominant physical mechanism. The lack of convergence with spatial
refinement, or convergence to a solution that is slightly different from the exact
solution, has been documented in the literature. A well-known limiting case for
this is the existence of spurious currents for the simulation of a spherical drop with
zero initial velocity. These currents are present in all previous versions of VOF
algorithms. In this paper, we develop an accurate representation of the body force
due to surface tension, which effectively eliminates spurious currents. We call this
algorithm PROST: parabolic reconstruction of surface tension. There are several
components to this procedure, including the new body force algorithm, improvements
in the projection method for the Navier–Stokes solver, and a higher order interface
advection scheme. The curvature to the interface is calculated from an optimal fit for a
quadratic approximation to the interface over groups of cells. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The volume-of-fluid method is based on solving the flow equations on a rectangular grid,
regardless of the geometry of fluid interfaces. These interfaces are reconstructed from the
values of a color (or VOF) function which represents the volume fraction of one of the fluids
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in each grid cell:

C(x) =
{

1, fluid 1,

0, fluid 2.
(1)

In the continuous surface force (CSF) algorithm [1–3], surface tension forces are computed
as a body force,

f = ��n�S, (2)

where � is the coefficient of surface tension, � is the mean curvature, n is the normal
to the surface, and �S is a delta function concentrated on the interface. Alternatively, the
continuous surface stress (CSS) method [4, 5] represents surface tension as the divergence
of a stress tensor,

f = ∇ · T, T = [(1 − n ⊗ n)��S]. (3)

In the continuum limit,

n�S = −∇C, (4)

where C is the color function. On discretization, the derivatives of the color function are
replaced by finite differences. The problem is that finite difference approximations for
derivatives of a discontinuous function are highly inaccurate. This leads to serious errors
in the computation of both the normal and the curvature. These errors are particularly
highlighted in the classical example given in Section 4. The initial condition is a spherical
drop with zero velocity (and at zero gravity), so that this exact solution should be preserved
for all time. However, previous VOF methods lead to the creation of spurious currents local
to the interface. Although these spurious currents are small as long as the Ohnesorge number

Oh = (Ca/Re)1/2 (5)

(where Ca = �U/�, Re = Ua�/�, � is viscosity, U is speed, � is interfacial tension, a
is length scale, and � is density) is sufficiently large, they do not disappear with mesh
refinement, leading to nonconvergence of the method. The problem can be ameliorated by
smoothing the color function before taking derivatives [6]. To actually restore convergence
to the scheme, however, smoothing would have to be over a distance which is large relative
to the mesh size; this is unrealistic in practice. Moreover, smoothing leads to artifacts of its
own by effectively suppressing surface tension in high-curvature regions [7, 8].

The interface is reconstructed from the volume fraction function, usually as a linear inter-
face per cell with the piecewise linear interface construction (PLIC) method. A potentially
more accurate method is given in [9] for the two-dimensional case. The authors note that
what they really need is an equation for the interface given the color function, but that
the reverse is easier. Given an exact formula for the interface, namely arcs of circles, they
calculate what the color function needs to be; they generate many such cases, which are
stored in a data bank. They generate an empirical formula, which they fit to this data base.
They postulate a third-degree polynomial to fit the data. The arcs of circles provide a higher
degree correction to the traditional linear interface of the PLIC method. They show that this
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drastically reduces the spurious currents. They remark that the method is extendable to three
dimensions if a uniform grid with cubic cells is used. They suggest the use of spherical
surfaces in place of circles. We remark, however, that this would not work because two
independent principal radii of curvature are needed in 3D.

We also refer readers to the literature for other approaches to reduce spurious currents
by appropriate methods of interface reconstruction. In [10] a cubic spline is fitted to the
values of the color function. The code of [11] also uses cubic splines but tracks the interface
using marker particles; the color function is reconstructed from the interface rather than the
other way around. Both these schemes are limited to the two-dimensional case at this point.
In [12] an algorithm is developed to reconstruct surface tension forces from a set of given
points on an interface in three dimensions without any a priori assumptions on connectivity
of the interface. In contrast to our approach, the works of [11, 12] track rather than capture
the interface, i.e., the primary information is a set of points on the interface rather than
volume fractions in grid cells.

In this paper, we introduce and test a novel algorithm for the computation of surface
forces for the general three-dimensional case. Our algorithm is based on the VOF method,
which reconstructs the interface from a color function. However, we refer to our method
as a sharp interface because the advection of the color function is based on a Lagrangian
scheme which allows no diffusion (i.e., the color function changes form zero to one within a
mesh width). Unlike previous algorithms such as CSF or CSS, we never need to consider a
smoothed color function. Instead, we calculate a least-squares fit of a quadratic surface to the
color function for each interface cell and its neighbors. In 3D, there are 27 cells involved.
The difference with the work of [9] is that we do not deal with empirical formulas and
data bases. Our surface tension algorithm leads to a second-order accuracy in the interface
reconstruction but is incompatible with the Lagrangian advection scheme described in [13]
for PLIC, which is of low order. Therefore, it is necessary to advect the interface more
accurately. In Section 3, a new higher order interface advection scheme is formulated. Our
surface tension algorithm together with our improved advection scheme comprise PROST
and result in the more accurate tracking of interfacial deformation.

In Section 4, we demonstrate that PROST can be used to effectively eliminate spurious
currents. Here, the code is begun with an exact solution, that of a spherical drop with zero
velocity, satisfying the governing equations, together with the body force of Eqs. (2) and
(4):

f = −��∇C. (6)

If � is a constant (i.e., for a sphere), the surface tension force is cancelled by a pressure
gradient and drives no flow. The key idea is that this still remains the case at the discrete
level, as long as ∇C and ∇ p are discretized by the same finite difference method (both
∇C and ∇ p are singular at the interface, but they cancel each other out). Hence the crucial
ingredient in avoiding spurious currents is an accurate approximation to the curvature. This
part of our algorithm is tested in Section 4. We show a comparison of the performance of
the past CSF with smoothing, and the CSS without smoothing. The magnitudes of the spu-
rious currents for the CSF and CSS schemes are shown in various norms, for spatial mesh
refinements, and are shown to be nonconvergent or convergent only in certain norms. In com-
parison, our method is shown to converge with spatial refinement and to produce no spurious
currents.
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The entire PROST algorithm including the higher order advection scheme is applied
to three-dimensional drop deformation under simple shear in Section 5. Simulations for a
spherical drop suspended in a second immiscible liquid, sheared between parallel plates,
are compared with that of a boundary integral code with an adaptive mesh [14, 15]. This
boundary integral code is expected to produce quite accurate results for the Stokes flow
regime. The evolution to steady state is documented for CSF, CSS, and PROST. We show
that for both CSF and CSS, the drop shapes converge with spatial refinement to steady-state
lengths that are slightly too long. The PROST simulation shows convergence with spatial
refinement toward the boundary integral results.

2. SHARP INTERFACE ALGORITHM FOR INTERFACIAL TENSION

We use the VOF code SURFER, which is described in [4, 16, 17]. There are three main
components to the code: (i) the interface tracking component based on the piecewise linear
interface construction method (PLIC) and a Lagrangian advection scheme, (ii) the Navier–
Stokes solver based on a projection method and a multigrid solver for the pressure field,
and (iii) the interfacial tension algorithm, CSF or CSS. Our basic scheme is that employed
in SURFER++, which has additional algorithms and physics and has been continually
developed [7, 18–26]. In this paper, we shall focus on the new aspects.

2.1. Approximation for Interface Shape

We need to identify those cells which contain the interface in order to determine the
interface normal and curvature. The color function is zero in one of the two fluids and one
in the other, and in the code we call a cell, an interface cell, if the value of the color function,
is between 10−8 and 1 − 10−8.

Figure 1 shows a sample grid, two-dimensional for simplicity. For each interface cell,
such as the one at the arrow with center coordinate x0, we attach the neighbors and examine
the nine cells. In Fig. 1, four out of the nine cells contain the interface. For the central cell,

FIG. 1. Sample two-dimensional grid. The arrow points to an interface cell with center coordinate x0, and
volume fraction C . The interface is fitted with a quadratic surface through this cell plus its neighbors, a total of
nine cells in 2D. Here, four out of the nine are interface cells.
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the interface is fitted with a quadratic equation of the form

k + n · (x − x0) + (x − x0) · A(x − x0) = 0. (7)

In three dimensions, there are 27 cells around the center node x0 · n is a unit vector approx-
imating the normal, and A is a symmetric matrix with the property that An = 0; that is, the
axis of the paraboloid is along n. This quadratic equation involves six parameters: one for
k, two for n with normalization, and three for A. For any given choice of these parameters,
we can compute the volume fraction v which the quadratic surface cuts out of a grid cell
(details of this computation are described in Section 2.5). The parameters for the quadratic
surface can be organized as a six-dimensional vector q, which is to be determined in such
a way that

f (q) =
∑

w(v − C)2 (8)

is minimized. Here the sum is over the given interface cell and all its neighbors, v is the
volume fraction in each cell determined by the quadratic surface, C is the value of the
color function in the cell, and w is a weight discussed below. For reasons of computational
efficiency, we have modified this and extended the sum only over interface cells. For the 2D
case in Fig. 1, q is a three-dimensional vector and v is the area under the parabola divided
by the total area of the cell. f (q) = ∑4

i=1(vi − Ci )2 must be minimized. Ideally, we would
like vi = Ci but this is four equations and there are three parameters for the parabola.

The reader may wonder why we restrict the quadratic terms by the constraint An = 0.
The rationale for this is that other quadratic terms in (7) would be effectively of cubic order.
As a simple illustration, consider a curve

y = ax2 + bxy + cy2; (9)

i.e., the curve passes through the origin and the normal is in the y-direction. We can rewrite
the equation of the curve in the form

y = ax2 + abx3 + (ab2 + ca2)x4 + O(x5), (10)

i.e., only a really contributes at quadratic order, while b and c contribute at cubic and quartic
order.

Finally, we need to explain the weights included in (8). The simplest choice would be
to simply set w = 1 in each cell. We modified this for two reasons. First, if an interface
passes close to a corner of a cell, then the value of the color function is quite insensitive
to the position of the interface. If the interface intersects a corner at a generic angle and is
moved by a distance �, the color function only changes by O(�3). To deal with this issue,
we introduce a weight factor

w1 = 1

C(1 − C) + �
, (11)

which forces a better fit in cells where C is close to 0 or 1. Numerical experiments with
different values of � led us to the choice � = 0.01. Actually, this made no real difference
to the results of the simulation, but it reduced the number of cases where the optimization
algorithm was slow to converge. A second, much more serious issue relates to the formation
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of checkerboards. Consider an interface that is a graph z = f (x, y), where f is a step
function assuming constant values in a checkerboard pattern. No quadratic surface can fit
such a checkerboard, and an unweighted sum in (8) does not produce a surface tension force
to suppress it. We saw such checkerboards emerge over time in some of our simulations.
There is no numerical instability, but checkerboards represent a neutral mode which can
gradually grow. As a mechanism for suppressing checkerboards, we introduce a weight w2,
which equals 1 for the “central” cell, 1/2 for each cell sharing a face with it, 1/4 for each
cell sharing an edge with it, and 1/8 for each cell sharing a corner with it. Finally, w is
equal to the product w1w2.

2.2. Optimal Fit

The basic algorithm for the least-squares optimization is that described in Sections A5.5.1
and A5.5.2 of [27]. This algorithm is implemented in the IMSL package, but we chose to
write our own code rather than use IMSL because (as of the time we wrote our code) this
part of the IMSL package is not thread safe for open MP parallelism. To minimize the
function f (q), we basically use the Newton iteration for finding zeros of ∇ f ; i.e.,

qi+1 = qi − (∇2 f (qi ))
−1∇ f (qi ), i = 0, 1, 2, . . . , (12)

where q0 is the starting value. The derivatives of f are calculated by finite difference
approximations. The Newton iteration is set up in the following way, to make sure that
f (qi+1) is less than for the previous iterate f (qi ). If the minimum is sufficiently close,
then ∇2 f is positive definite. On the other hand, the finite difference approximation of the
matrix ∇2 f may not be positive definite because of numerical errors. In order to hit a better
iterate, a constant is added to the diagonal to make it positive definite [27]. We note that the
Newton iteration assumes f to be smooth, and our function is actually not smooth when
the interface crosses a corner of a grid cell. To handle these cases, we modify the algorithm
when f (qn+1) does not come out less than f (qn), |∇ f | is larger than a specified tolerance,
or convergence is not obtained in a satisfactory number of steps. If this happens, we set

qn+1 = qn − �∇ f (qn), (13)

where � is chosen such that f (qn+1) is as small as possible. If this algorithm still does not
achieve convergence, we do an alternating search along coordinate directions, each time
searching for the minimum along a line.

By combining these algorithms, we are able to obtain convergence of the optimization
algorithm in almost all cases. Some exceptions occur as breakup is reached, and in these
cases we simply “give up” and stop the optimization algorithm after 200 steps.

To improve the mass conservation of the scheme, we adjust the value of k at the end
of the optimization so that the value of the color function C in the central cell is fitted
exactly (without such a correction, we do not obtain acceptable results for mass conserva-
tion). We make an exception to this, however, if cells are almost empty or full, because, in
these cases, as mentioned above, a fairly large shift of the interface may be needed to
achieve the right value of the color function. This shift would then produce a quite inac-
curate interface, leading to interface reconstructions in certain cells which fit poorly with
neighboring cells. A satisfactory compromise was achieved by adjusting k only for cells
with 0.02 ≤ C ≤ 0.98.
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The iteration for the optimization needs a starting value. At the initial time, we generate
this starting value from the analytic form of the initial interface. At subsequent times, the
starting value is the equation of the interface at the previous time step, updated by advection,
as described below.

2.3. The Mean Curvature �

The surface tension force is now calculated as −��∇C , where � is calculated as 2tr(A),
with A being the matrix from (7). This defines � at cell centers, while the components of ∇C
are defined at the centers of the faces of a cell. We interpolate the value of � as a weighted
average; that is, in the x-component, the combination �∂C/∂x is

[
�

∂C

∂x

](
xi−1/2, y j , zk

) = w1�(xi−1, y j , zk) + w2�(xi , y j , zk)

w1 + w2

×
(

C(xi , y j , zk) − C(xi−1, y j , zk)

�x

)
, (14)

where

w1 = C(xi−1, y j , zk)(1 − C(xi−1, y j , zk)), w2 = C(xi , y j , zk)(1 − C(xi , y j , zk)). (15)

The rationale behind this weighting is that we expect the approximation to the curvature to
be more accurate when C is not close to 0 or 1. For example, if the cell at (xi−1, y j , zk) is
not an interface cell, then �(xi−1, y j , zk) is not defined there, but its weight w1 is zero, so
that the combination is zero.

2.4. Singular Part of Pressure Gradient

In our Navier–Stokes solver, we decouple the velocity and pressure fields with a projection
method [28]. At each time step, we first integrate the velocities as though the pressure term
were absent and then solve for the pressure to make the velocity divergence free. Namely,
given the quantities at time level n, an intermediate velocity u∗ is calculated; i.e.,

u∗ − un

�t
= −un · ∇un + 1

�
(∇ · (�S) + F)n, (16)

where F includes gravity and the interfacial tension force, and S is the strain rate tensor. u∗

is not, in general, divergence free, and

un+1 − u∗

�t
= −∇ p

�
, (17)

where un+1 at time level n + 1 satisfies

∇ · un+1 = 0. (18)

When Eq. (17) is substituted into Eq. (18), a Poisson equation for the pressure field results:

∇ ·
(∇ p

�

)
= −∇ · u∗

�t
. (19)
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We can combine the equations above and obtain

un+1 − un

�t
= −un · ∇un + 1

�
(∇ · (�S) + F)n − ∇ p

�
. (20)

In our code, however, we do not use the explicit scheme. For the velocity solution, we
use the semi-implicit method of [21], which is lengthy to write out in full. Here, therefore,
we write it in symbolic form:

�
u∗ − un

�t
= Au∗ + B(un) + f,

(21)

�
un+1 − u∗

�t
= −∇ pn+1.

A represents the operator that acts on the term u∗ and B represents the one acting on un

and are given in [21]. Again, f is the body force which includes the singular surface tension
force. Combining the two equations yields

�
un+1 − un

�t
= Aun+1 + B(un) + f − ∇ pn+1 + (�t)A(�∇ pn+1). (22)

The last term may be significant unless �t is very small, since p includes the singular
pressure which is needed to balance surface tension. For this reason, we modify our scheme
as follows:

�
u∗ − un

�t
= Au∗ + B(un) + f − ∇ p1,

(23)

�
un+1 − u∗

�t
= −∇ p2.

Here, p1 is chosen such that f − ∇ p1 is divergence free. Combining the two equations now
yields

�
un+1 − un

�t
= Aun+1 + B(un) + f − ∇(p1 + p2) + (�t)A(�∇ p2), (24)

which shows that since ∇ p2 is orders of magnitude smaller than ∇ p1, the O(�t) error term
is much smaller. This algorithm measurably improves the size of the time step that can be
used. For example, the results of Section 5 are obtained with 10 times the time-step size
used in [8, 21, 22, 26, 29] and are more accurate.

2.5. Second-Order Algorithm for Volume Fraction

To complete the description of the numerical algorithm, we need to describe how we
calculate the volume which the quadratic surface given by (7) cuts out of a cell. That is, we
want to find the volume within the parallelepiped

x0 − �x/2 ≤ x ≤ x0 + �x/2,

y0 − �y/2 ≤ y ≤ y0 + �y/2, (25)

z0 − �z/2 ≤ z ≤ z0 + �z/2,
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where

k + n · (x − x0) + (x − x0) · A(x − x0) ≤ 0. (26)

A naive approach to computing the volume fraction would be to use a “pixel method,”
i.e., to take a regularly spaced grid of points in a cell and determine the volume fraction
by counting the number of points on the right side of the interface. This, however, is
hopelessly slow and totally impractical. An exact analytical evaluation of the volume fraction
is possible, and indeed we programmed it. We found, however, that this was about five times
slower than the algorithm we describe below and, even more serious, we were unable to
control round-off errors. For this reason, we settled for an approximate evaluation of the
volume fraction.

We can simplify the calculation if we assume that the mesh size is small and the curvature
is of order 1. First, we reorient our coordinates such that the largest component of n is in
the z direction and is positive. This will guarantee that within our mesh cell the interface is
a graph z = g(x, y). Next, we can approximate g by a quadratic function, as follows. First,
use the linear approximation in Eq. (7),

z − z0 ∼ − 1

n3
(k + n1(x − x0) + n2(y − y0)), (27)

and second, we substitute this expression for z in the quadratic terms. We thus need to find
the volume under the graph of the function z = g(x, y) which lies above z = z0 − �z/2
minus the volume which lies above z = z0 + �z/2. To find the volume which lies above,
say z = z0 − �z/2, we find the intersection of the graph with the plane z = z0 − �z/2. This
is a quadratic curve, and we need to integrate over the area which lies on one side of the
curve.

If the projection of the normal onto the x, y-plane is small, we can expect the quadratic
curve to have a high curvature, and in this case we use a seminumerical procedure, where
the integration in one direction is carried out numerically. Otherwise, we use an analytic
approximation. We first, if necessary, cut the base rectangle into quadrants such that in each
quadrant the curve representing the interface is represented by a monotone function y(x).
Next, the line of intersection is approximated by a straight line obtained from interpolating
between the intersection points with the edges of the rectangle. In this fashion, the problem
is reduced to integrating a quadratic function over a set which is the union of rectangles
and triangles. This procedure determines the volume fraction in the cell (the volume of the
intersection O(h5) divided by the cell volume O(h3)) to within an error of order h2, where

h = max(�x, �y, �z) (28)

is the spatial grid size.

3. HIGHER ORDER INTERFACE ADVECTION SCHEME

The original advection scheme in SURFER is based in a piecewise linear interface re-
construction and a Lagrangian scheme which advects successively in the three coordinate
directions, To advect in the x-direction, for instance, let us consider the cell indexed by
(i, j, k). The volume fraction in this cell is c(i, j, k). At each time step, fluid contained in
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cell (i, j, k) can move to cells (i − 1, j, k), (i, j, k), and (i + 1, j, k). The three fractions are
determined as follows. First, the right and left face of the cell are moved, respectively, with
the velocity lying at the nodal point at the center of each face, and the interface is subjected
to the affine deformation imposed by this motion. After deforming in this way, one deter-
mines the amount of fluid which has moved to each neighboring cell by this deformation.

In the new scheme, we apply this same algorithm, with the difference that we use our
quadratic representation of the interface instead of a linear reconstruction. At each advection
step, we update the equation of the interface as well as the values of the color function. If
the interface moves into new cells, we extrapolate the interface equation from a neighboring
cell to define an interface equation in the new cell.

To improve the accuracy of the advection, we apply a “shear correction,” which takes
account of the fact that the speed with which fluid 1 is advected in a cell may differ from the
average speed because of shear. Since the difference in speed is small, of order h, we use a
Eulerian scheme based on fluxes. For each face of the cell, we then calculate the area on this
face which lies within fluid 1 and the center of mass of this area. We use linear interpolation
from nodal values to determine a normal velocity at the center of mass. We then take the
difference between this velocity at the center of mass and the nodal velocity at the center
of the face of the cell. For this difference velocity, a volume flux is calculated from area ×
normal velocity × time step. For each face of the cell, we determine the volume of fluid
leaving the cell if this flux is outward. The volume remaining in the cell is the original
volume minus the total volume leaving. Finally, the new value of the color function in each
cell is found by adding the volume remaining in that cell and the volume entering from
neighboring cells. We note that the linear interpolation of velocity near the interface is not
correct unless the viscosity ration is 1, and hence the improvement of the shear correction
is only qualitative. A “better” alternative would then depend on the interpretation of what
exactly the nodal values of velocity represent. We do not attempt to address such issues
since, in any case, the proper treatment of discontinuities in the velocity gradient has not
been addressed in other parts of the code, such as the momentum equation.

To calculate the area and center of mass, we can usually assume that the curve representing
the intersection of the interface and the face of the cell is close to a straight line. If this is
the case, we use an analytical approximation where the area is determined as a union of
rectangles and triangles which are found from the intersections of the interface with the
edges. At points where the curvature is large, we use a numerical evaluation instead. For a
smooth interface, this situation occurs when, for instance, the face of the cell is parallel to
the x, y-plane and the normal of the interface is close to the z-direction.

4. NUMERICAL RESULTS ON SPURIOUS CURRENTS

Spurious or parasite currents are described in [5] as vortices “in the neighborhood of
interfaces despite the absence of any external forcing. They are observed with many surface
tension simulation methods, including the CSF method, the CSS method, and the lattice-
Boltzmann method, in which they were first discovered.”

In this section, we compare the CSF, CSS, and PROST methods. The specific version of
the CSF method we use is based on [1]; for the smoothing kernel we use the kernel K8 of [6].
One smoothing iteration is used for the normal and two for the curvature. (Some alternative
implementations of the CSF method, which lead to some improvement of spurious currents,
are discussed in [6].)
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TABLE I

Norms of Velocity at 200th Time Step, ∆t = 10−5

�x L∞ L2 L1 Method

1/96 0.00179982 0.00008403 0.00001473 CSF
1/128 0.00184090 0.00008542 0.00001539
1/160 0.00189053 0.00008596 0.00001569
1/192 0.00196880 0.00008627 0.00001569

1/96 0.00377043 0.00014183 0.00001920 CSS
1/128 0.00358876 0.00012446 0.00001615
1/160 0.00360416 0.00011230 0.00001438
1/192 0.00398403 0.00010453 0.00001346

1/96 0.00002243 0.00000087 0.00000014 PROST
1/128 0.00001309 0.00000053 0.00000009
1/160 0.00000954 0.00000041 0.00000007
1/192 0.00000568 0.00000023 0.00000004

Our computational domain is 1 × 1 × 1, the spatial mesh keeps �x = �y = �z, and the
time step is �t = 10−5. The boundary conditions are zero velocity at the top and bottom
walls, and periodicity in x- and y-directions. Initially, a spherical drop is centered at (0.5,
0.5, 0.5), with radius a = 0.125 and surface tension � = 0.357. Both fluids have equal
density, 4, and viscosity, 1. The initial velocity field is zero. The exact solution is zero
velocity for all time. In dimensionless terms, the relevant parameter is the Ohnesorge number
Oh = (�2/��a)1/2 ∼ 2.37.

The amplitude Max |u | of the spurious currents is difficult to estimate a priori but
Refs. [4, 5] find from direct measurements that they are of order 0.01�/�, leading to a
Reynolds number based on spurious currents, which is of the order 0.01/Oh2. At small
Ohnesorge numbers, this can lead to troublesome flow instabilities. Table I verifies this
scaling for the CSF and CSS methods. The table shows the L∞, L2, and L1 norms of the
velocity field for the spurious currents. While the L∞ norm gives the maximum speed, the
L2 and L1 norms indicate a measure in an average sense for the computational domain.
Table II shows results for PROST with larger time steps, showing that entries of Table I are
converged with respect to time step. The scaling of spurious currents with �/� is obvious,
since the surface tension force driving them is proportional to � and is counteracted by
viscous damping. Since the PROST algorithm reduces spurious currents by two to three
orders of magnitude, it will also eliminate the instabilities at low Ohnesorge numbers.

TABLE II

Norms of Velocity at 20th Time Step, ∆t = 10−4

�x L∞ L2 L1 Method

1/96 0.00002156 0.00000084 0.00000014 PROST
1/128 0.00001264 0.00000051 0.00000008
1/160 0.00000905 0.00000039 0.00000006
1/192 0.00000545 0.00000022 0.00000004

Note. This shows that the results in Table I for the PROST method
are converged with respect to the time step.
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FIG. 2. CSF, velocity vector plot across centerline in the x–z-plane at 200th time step, �t = 10−5. These show
the locations of the spurious currents with mesh refinement, �x = 1/96, 1/128, 1/160. The relative magnitudes
of the vectors are given in Table II.

These tables show the following:

1. For the CSF method, mesh refinement does not decrease the spurious currents in any
of the norms. In fact, they increase slightly in L∞ and L2 and stay about the same in L1. To
illustrate this, Fig. 2 shows the two-dimensional cross section of the drop in the x–z-plane.
The spurious vortices are present at the same positions and spread over the same amount of
the domain for all the meshes.

2. For theCSS method, mesh refinement does not decrease the L∞ norm of spurious
currents but decreases the L2 and L1. Figure 3 shows half of the cross section of the drop
in the x–z-plane. With mesh refinement, the number of vortices increases, and they cover
less domain.

3. For the PROST method, spurious currents are so small that they are effectively not
present. This is no surprise. As we pointed out earlier, there would be NO spurious currents
if curvature were constant and our initial interface a sphere. The only reason the curvature
is not exactly constant is because the least-squares fit approximates the sphere as piecewise
paraboloids. The magnitude for the �x = 1/96 mesh is 1/100th that of CSF or CSS and
thereafter decreases with mesh refinement with O(h), h = Max{�x, �y, �z}. Figure 4 plots
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FIG. 3. CSS, not mollified, velocity vector plot across centerline in the x–z-plane at 200th time step,�t = 10−5.
Mesh refinement study, �x = 1/96, 1/128, 1/160. Each vector plot is magnified so that the vectors are visible.
The relative magnitudes of the vectors are given in Table II.
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FIG. 4. VOF-PROST, velocity vector plot across centerline in the x–z-plane at 200th time step, �t = 10−5.
Variation of spurious current with mesh refinement, �x = 1/96, 1/128, 1/160. Each vector plot is magnified so
that the vectors are visible, the latter two plots being magnified much more than the first. The relative magnitudes
of the vectors are given in Table II.
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FIG. 5. CFL numbers vs time steps (200), �t = 10−5. The CFL numbers remain the same order of magnitude
as that at the 200th time step.

the velocity vectors in comparison to Figs. 2 and 3. The three plots in Fig. 4 should not be
compared for relative magnitudes. In order for the spurious currents to be discernible, the
1/128 and 1/160 cases are magnified much more than for the 1/96 mesh. To obtain the true
relative magnitudes among the three meshes, we refer the reader to Table II. Figures 2–4
and Tables I and II show that the locations of the spurious currents for PROST are similar
to those of CSF, and that the magnitudes decay with spatial refinement.

Figure 5 shows the evolution of the Courant–Friedrichs–Levy number (CFL),

CFL = Umax�t/�x, Umax = max|u|. (29)

This is a measure of the L∞ norm of the spurious current. The figure shows the evolution of
the CFL number over a longer time interval to show that it settles to some saturation level,
and the sampling at the 200th time step for Table I is already at that magnitude.

5. NUMERICAL RESULTS ON DROP DEFORMATION

VOF-PROST is compared with the boundary integral method of [14, 30] for drop defor-
mation under simple shear. The geometry is a Couette device, with a drop suspended in a
second liquid, and sheared by the motion of outer walls. A capillary number is defined by

Ca = 	
̇a

�
, (30)

where 
̇ is the shear rate (normalized to 1 in the computations),	 is the viscosity of the matrix
fluid, � is the interfacial tension coefficient, and a is the initial drop radius. At Ca = 0.35,
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TABLE III

Table of Capillary Time, Physical Time, the Boundary Integral

Results, Results for Re = 0.0625 from VOF-CSF with (1) h = 1/128,

∆t = 5 × 10−4, (2) h = 1/128,∆t = 2 × 10−4

Capillary time Time B. I. Stokes CSF 1 CSF 2

0.000 0.000 0.997 0.999 0.999
1.000 0.350 1.150 1.154 1.154
2.000 0.700 1.265 1.277 1.276
3.000 1.050 1.351 1.371 1.367
4.000 1.400 1.422 1.447 1.441
5.000 1.750 1.475 1.511 1.495
6.000 2.100 1.521 1.554 1.543
7.000 2.450 1.558 1.597 1.582
8.000 2.800 1.586 1.629 1.615
9.000 3.150 1.611 1.659 1.644

10.000 3.500 1.631 1.682 1.665
15.000 5.250 1.691 1.757 1.736
20.000 7.000 1.711 1.787 1.761
30.000 10.500 1.718 1.815 1.775
40.000 14.000 1.717 1.816 1.776
50.000 17.500 1.717 1.816 1.776

the drop does not break up in Stokes flow. For our similations, we use a Reynolds number
of 0.0625, which should be small enough for the results to be only slightly different from
Stokes flow.

Tables III and IV show the comparison of the boundary integral method with VOF-PROST
and VOF-CSF at Ca = 0.35 (the boundary integral method is validated against experiments

TABLE IV

Table of Capillary Time, Results for Re = 0.0625 from VOF-PROST

with (1) h = 1/96,∆t =10−3, (2) h = 1/96,∆t = 5 × 10−4, (3) h = 1/128,

∆t = 10−3, (4) h = 1/128,∆t = 5 × 10−4

Capillary time PROST 1 PROST 2 PROST 3 PROST 4

0.000 0.997 0.997 0.999 0.999
1.000 1.154 1.153 1.154 1.153
2.000 1.269 1.267 1.272 1.269
3.000 1.359 1.355 1.363 1.358
4.000 1.424 1.417 1.435 1.426
5.000 1.478 1.470 1.490 1.480
6.000 1.521 1.509 1.536 1.524
7.000 1.556 1.542 1.573 1.559
8.000 1.585 1.570 1.604 1.588
9.000 1.607 1.590 1.630 1.612

10.000 1.625 1.607 1.652 1.631
15.000 1.672 1.650 1.711 1.685
20.000 1.695 1.660 1.736 1.702
30.000 1.702 1.664 1.749 1.709
40.000 1.702 1.665 1.749 1.709
50.000 1.703 1.665 1.749 1.709
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FIG. 6. Evolution of half-length/initial radius for VOF-PROST, with mesh �x = �y = �z = 1/96, �t = 10−3

(curve 2); �x = �y = �z = 1/96, �t = 5 × 10−4 (curve 1); �x = �y = �z = 1/128, �t = 10−3 (curve 4);
�x = �y = �z = 1/128, �t = 5 × 10−4 (curve 3); �x = �y = �z = 1/160, �t = 10−3 (curve 6). Curves are
numbered from bottom to top. The results of the boundary integral code (curve 5) are shown for comparison.

in [30] and shows excellent agreement). We used two different mesh sizes (1/96 and 1/128)
and different time steps. Clearly, the PROST method agrees much better with the boundary
integral results than does CSF. We note that while CSF overpredicts the final length of the
drop, PROST has two competing effects. Time discretization overpredicts it, while spatial

FIG. 7. Drop at time 47.7, just before breakup; full view.
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FIG. 8. Drop at time 47.7, just before breakup; view of neck.

discretization underpredicts it; we believe this latter effect is due to the fact that the method
overestimates curvature.

We also compared the CPU timings of PROST and CSF for the same time step and mesh
size (5 × 10−4 and 1/128). The optimization to find the least-squares fit to the interface be-
comes the dominant factor determining the computing time. We can cut down on computing
time by performing the optimization only every other time step (the interface still gets ad-
vected at every time step; only the “reconciliation” between the equation for the interface
and the values of the color function is postponed to the second time step). This change made
only minimal difference to the results, and the difference between CSF and PROST for the
same mesh size and time step is then roughly a factor of 3. However, the PROST method
gives more-accurate results than CSF even on a courser mesh, and the CSF results do not
become significantly better with further mesh refinement (due to time constraints we did
not do a full calculation for finer meshes, but we did partial calculations, e.g., to find the
final equilibrium length).
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FIG. 9. Drop at time 47.8, close to breakup; view of neck.

We next show a situation where drop breakup occurs. The fluids have equal density,
9, and viscosity, 1, the surface tension parameter is 0.1893, and the initial drop radius is
1/12. This corresponds to a capillary number of 0.44 and a Reynolds number of 0.0625.
This situation is quite close to the critical capillary number and is therefore much more
challenging for simulation than the case shown above. Figure 6 shows the evolution of
the end-to-end length. The results confirm the trend observed above that the length de-
creases with temporal refinement and increases with spatial refinement. We also show
results of Cristini’s boundary integral code. Clearly, the spatial resolution of the 96 and
128 mesh is insufficient, but for the 160 mesh we are beginning to obtain reasonable agre-
ement.

Figures 7–10 show the breakup of the drop, based on our computation with the 160 mesh.
It occurs at approximately time 47.8; at this point the length of the drop has increased by
a factor of 5.39 from the original sphere. For comparison, Fig. 11 shows the drop shape
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FIG. 10. Drop at time 47.9, after breakup; view of neck.

just before breakup, computed with the boundary integral method. For this plot, the time is
47.5, and the length of the drop (relative to its initial diameter) is 4.84.

For the PROST simulation on the 160 mesh, the volume of the drop is equal to 2482.24
grid cells at the beginning of the simulation and equal to 2487.84 grid cells at time 47.9,
just after breakup, illustrating acceptable conservation of mass.

FIG. 11. Drop at time 47.5, boundary integral simulation.
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6. CONCLUSION

The PROST algorithm is shown to converge spatially, a feature that is absent from its
predecessors, CSF and CSS. PROST effectively eliminates the spurious currents for VOF
methods. The general trend is that temporal discretization error causes drops to stretch too
rapidly, while spatial discretization error causes them to stretch too slowly.
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